NASA TECHNICAL NOTE

NASA TN D-2491
<4
Ve ¥4 . — b=
- LOAN COPY: R =18
= AFWL (Wi = Z
> KIRTLAND AFIoE= 8
= =k
- D= 3
- r=3
(] =
2 =z
-

BOUNDARY LAYERS ON ROTATING SPHERES
AND OTHER AXISYMMETRIC SHAPES

by Jay Fox

Lewis Research Center
Cleveland, Obio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. « SEPTEMBER 1964

A

et



- ‘~< 4‘4'...' —

TECH LIBRARY KAFB, NM

VAR

00?9581

BOUNDARY LAYERS ON ROTATING SPHERES AND
OTHER AXISYMMETRIC SHAPES
By Jay Fox

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Office of Technical Services, Department of Commerce,
Washington, D.C. 20230 -- Price $0.50



BOUNDARY TAYERS ON ROTATING SPHERES AND
OTHER AXISYMMETRIC SHAPES
by Jay Fox

Tewis Research Center

SUMMARY

Most of this report is concerned with the laminar boundary layer on a
rotating sphere in a fluid at rest. The existing controversy as to the behavior
of the boundary layer near the equator is examined in the light of the govern-
ing equations. Errors were found in one group of previous solutions. A new
series solution that agrees with existing experimental results provides a com-
parison with the consequences of the erroneous solutions., The new solution is
so formulated that boundary layers on meny axisymmetric shapes with conical
tips (including spheres) can be calculated. Numerical values of four orders of
series functions are given.

INTRODUCTTION

A1l investigators of the boundary layer on a rotating sphere in a gquies-
cent fluid agree that the flow near the poles is similar to that on a rotating
disk. The rotating surface swirls the fluid around, and the centrifugal forces
induce a flow away from the axis, which is accompanied by an inflow to the
boundary layer from the surrounding fluid. The flow behavior near the equator
is in dispute.

Howarth (ref. 1) developed the boundary-layer equations and proposed a
series solution. No calculations were made for the series; instead, a poly-
nomial solution to the momentum integral equations, in which certain terms were
neglected, was calculated. TFlow through the equatorial plane from both hemi-
spheres was predicted by the solution. Howarth deduced that the actual bound-
ary layers collide at the equator and are flung outward in a manner that cannot
be described by the boundary-layer equations.

Nigam (ref. 2) disputed these findings and proposed a countersolution to
the same boundary-layer equations which specified that the flow toward the
equator slows and stops so that no fluid crosses the equatorial plane. Accord-



ing to Nigam, the fluid leaves the boundary layer by flowing outward away from
the sphere between 55° and 90° from the pole with no collision occurring at the
equator. Approximate values of the series functions were obtained by a poly-
nomial method. Other investigators have extended Nigam's analysis to spheroids,
heat transfer, and non-Newtonian fluids (refs. 3 to 5). Low Reynolds number
flows have been treated with somewhat similar assumptions (ref. 6).

Stewartson considered Nigam's statement that the fluid flowed out of the
boundary layer before the equator and concluded that such a flow could not
exist (ref. 7). An experimental velocity survey (ref, 8) indicated both an
outflow before the equator and an equatorial jet that resulted from the col-
lision of the two boundary layers. Recently, Bowden and Lord (ref. 9) mea-
sured the torque on a magnetically suspended sphere. In smoke studies, no out-
flow was noted except that in the equatorial jet (refs. 9 and 10).

In the present review of the problem, Nigam's solution is examined in some
detail. The unusual features of the analytic formulation are contrasted with
the features of conventional formulations and with the physical implications of
the governing momentum equations, A comparison with a new solution shows some
of the conseguences of Nigam's formulation.

The new series solution is so formulated that boundary layers on a family
of spinning shapes with conical tips can be calculated by the use of the given

series functions., The calculated torgue value for a sphere agrees with an ex-
perimental value measured by Bowden and Lord (ref. 9).

NIGAM'S SOLUTION

Analytic Formulation

A general agreement exists in the form of the constant-property boundary-
layer equations on a rotating sphere
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where x and u are the distance and velocity components along the sphere
generator from the pole, y and v are the distance and velocity components
normal to the spherical surface, and z and w are the distance and velocity
components along the circles formed by the intersection of the sphere with
planes normal to the axis. The symbols a and v designate the sphere radius

and kinematic viscosity.

Derivatives in the z-direction are zero by symmetry. The adherence of the
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fluid to the spinning sphere produces the only nonzero boundary condition
Wy_Q = aw sin (x/a), where o is the rotational speed.

Nigam proposed a solution in the following form:

u = aw cos e[Fl(Y)sin 6 + F3(¥)sin30 + Fs(¥)sin6 + . , ] (22)

v = (vcn)l/2<l - 38—;ng—e->[ﬂl(¥) + Hy(Y)sin0 + H(Y) sin%e + . . ] (2b)

W o= aw[Gl(Y)sin 6 + G5(Y)sin30 + G5(¥)sind 0 + . . ] (2¢)

where Y = y(m/v)l/2 and 6 = x/a. One nonzero boundary condition G1(0) =1
is used; the remaining boundary conditions (F1(0), Fi(«), ete., except Hy(w),
HS(W), e « o) are zeroat Y =0 and as Y approaches infinity.

The first-order approximations to wu, v, and w, namely Fy, Hy, and G,
are the well-known similarity results for a rotating disk that also satisfy the
full Navier-Stokes equations. As a result, Nigam's solution is well-founded
in rigorous fluid mechanics at the pole.

In addition to the initial value of u = 0 at the pole, the form of the
series in equation (2a) prescribes a zero value for u at the egquator
(6 = ﬂ/Z), which is contrary to the conventional practice with boundary-layer
equations. Usually, just an initial velocity u(0,y) is specified because the
boundary layer equations are first-order equations in the x-direction. On a
sphere the initial motion at the pole is like that on a rotating disk, where
the similarity of the wvelocity profiles is used instead of an initial condition
as such to find the solution to equations (1). At a general point the rate of
change of u in the downstream (x-) direction is specified by a convective ac-
celleration term wu(du/dx) in equation (la) as a response to local forces.
Nigam's solution accommodates changes from the initial similarity solution by
means of contributions from the higher order terms of the series. These con-
tributions begin, in effect, at successively greater distances from the pole as
the order increases. At the equator, however, the higher order terms cannot
correct the solution for nonsimilar conditions because all the terms are zero.
This is equivalent to a downstream restriction u(ﬂ/E,y) = 0 on the boundary
layer. There are no means in the boundary-layer equations (1) by which this
downstream condition can be accomodated. No information can be transmitted up-
stream by any of the terms in equations (1).

It is evident, however, from the symmetry of the spherical flow field that
u(ﬁ/Z,y) = 0 d1is a condition that exists in the actual flow even though the
boundary-layer equations cannot accommodate it. The possibility that a wvalid
solution to the boundary-layer equations naturally contains this equatorial
condition, with no accommodation, is examined in the next section.

Momentum Considerations

The terms in equation (la) are considered herein in an intuitive deduction




of the boundary-layer dynamics near the equator. As a first step, the physical
roles of the terms in equation (la) are stated. The first two terms represent
the convective acceleration component., Centrifugal and viscous forces are
specified by the last two terms. Flow in the x-direction is induced by the
component of the centrifugal forces that is parallel to the surface, as speci-
fied by the third term in equation (la). The sense and relative magnitude of
this component can be visualized by evaluating equation (la) at the surface:

2
- 2 gin 6 cos 6 = v (g;%) (3)

The centrifugal term in equation (3) increases initially with 0, reaches its
maximum at & = ﬂ/4, and decreases to zero at the equator. On the entire
hemisphere this term tends to accelerate the flow., The viscous term in equa-
tion (la) together with the zero boundary conditions u(6,0) = u(6,x) =0

tends to reduce wu by momentum diffusion. Nevertheless, it seems evident tThat
some u > 0 exists in the fluid that approaches the equator because of the
inertia of the fluid and the accelerating influences,

Nigam's equatorial condition wu(w/2,y) = 0, which must also exist in an
experiment, is not compatible with boundary-layer dynamics according to the
governing equations. This incompatibility implies that the boundary-layer
flows collide and flow outward along the equatorisl plane, as Howarth visual-
ized (ref. 1) and Bowden and Lord showed experimentally (ref. 9). This be-
havior is also implied by the new boundary-layer solution that yields

u(x/2,y) > O.

NEW SOLUTTION

The new series solution describes boundary layers on axisymmetric spinning
bodies with conical tips. In this sense a sphere is regarded as a cone-tipped
body with a vertex angle of =xn., The boundary-layer equations for this case are
shown in the form used by Geis (ref. 11):

du du  wlr! d%u
U=t e v . (4a)
ow ow P % ()

u + v v
dx 3; T ByZ

du , ov , ur'
g}-{-—l-ay—l-—r—'zo (4c)
were r = r(x) is the radius of the surface measured normal to the axis, and
r' = dr/dx. The other symbols are used in the same sense as on a sphere
(egs. 1).
Series expansions of the stream function  have been widely used in fluid

mechanics but not in previous solutions to this problem. Howarth and Nigam
chose to expand the three velocity components in separate series (refs. 1
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and 2). Stream function expansions satisfy the continuity equation identi-
cally, of course, and thereby reduce the number of dependent variables in
equations (4) by one.

If a convenient reference length L is available, the solution is

=%7y_", I'V=-§¥C' (58‘)

2
= L2(1zcm~1)l/2 [erlfl(ﬂ) + Xirafz(n) + %6 (r5f5a(ﬂ) + % f5‘b(”)>
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ey 1/2
n=y T (58)
where X = x/L is not necessarlly associated with an angle. On a sphere,
however, X = 6 and L = seem most convenient. Dimensionless coefficients

r1, Tz, « « « are used in equations (5) but equivalent dimensional coefficients
are easily obtained by eliminating L. The dimensions of powers of I, are
carried by the coefficients, and X is replaced by x. 1In either casge

r{ = sin ¥ 1is dimensionless, where 7Y 1is one-half the cone vertex angle at
the tip.

Boundary conditions are

\
fl=f5=f5a=f5-b=f7a=f7b=f7c=o
| B | 1 —_ Pt _— 1 — t — 1 —_
Ty =T =105, =15 =T =Ty =17, =0 (6a)
>n =0
81 =83 = 854 = 875 = 1
850 = & = 870 = O
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£l T3> T8y > T8 > Ty > Ty > T4 2 O
n - o (6b)
81 7 837 854 7 B5p 87 T By < &y 7 O

In this form, the g~ and f-functions are independent of the r-coefficients and
3 need to be calculated just once for boundary layers on all bodies that can be
5 described by equation (5d). The need for caution in the application of*
N boundary-layer results to bodies with small vertex angles was demonstrated in a
¥ rotating cone experiment (ref. 12).

Equations (5) are substituted into equations (4), and the coefficients of
the expansion parameters (rlX, r5X3, . + .) are equated to zero., The succes-
sive sets of ordinary differential equations that result are then solved numer-
ically. Curves of the f'- and g-functions, which pertain to the velocity com-
ponents u and w, are shown in figures 1 and 2. Surface derivatives and
limiting f-values are shown in table T.

TORQUE ON A SPHERE

If a sphere is entirely covered by two hemispherical boundary layers, the
torque T exerted on the spinning body is

. /2 1 :
T = Llfraé’fuv_l/aws/d f sinze[egi(o) -5 93gé(0) + .. .]de (7a)
0
_ atuv 1/203/21 6,700 - 4.081 + 0.744 - 0.100 + . .+ .] (7p)
- 3.27 atuy~1/2,3/2 (7¢)

where p 1is the absolute viscosity. The successive contributions to the coef-~

ficient in equation (7b) are associated with successive odd powers of 6. The
uncertainty in the coefficient in equa-

TABLE T. - SURFACE DERTVATIVES AND ILoMIT- bion (7c) probsbly does not exceed 0.02 be-

cause of the rapid convergence of the alter-

ING VALUES OF f- and g-FUNCTIONS nating sequence in equation (7b).

Subscript £"(0) g'(0) £(w) Bowden and Lord measured coefficients
a between 3.25 and 4.0, the low values oc-
% 3'22‘33% a'g‘ iéggzé 0.442 | cyrring at high speeds and pressures
. 5a 2. 417578 | -1.992334 :;gg (ref. 9). The agreement between the theo-
5b 1.5011.00 -.327129 | .090 retical and the experimental coefficients is
Ta 2.996120 | -2.457972 | .306; YDetter than is apparent at first glance.
;’2 S'Zizjégi :'igigé ‘(l)gi When the low coefficients were measured, the
) . : experimental conditions indicated that the

8YValues to five places have been re- Reynolds numbexo's were high and the T.DOI‘JIldaI'y

ported in a study of flow on a rota- layers were thin. Under these conditions,
ing cone (ref. 13). the collision region at the equator appears
guite small in the schlieren photographs by
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Bowden and Lord. This suggests that the collision process made a negligible
contribution to the measured torque, Thus, the appropriate comparison for the
theoretical torque value, which does not account for the collision process, is
provided by the measurements at high Reynolds numbers, namely, the low experi-
mental coefficients. The difference between these low experimental coeffi-
cients and the theoretical coefficient is of the order of 1 percent.

In a footnote Bowden and Lord (ref. 9) attribute a coefficient of 3.32 to
a recent solution of the momentum integral equation by Howarth and Banks that
is more exact than the original solution by Howarth.

Nigam's torque results are

T = abuy /243/2[1.63 + 1.57 + 0.78 + . . .] (8a)

3.98 aéuv-l/zwg/z (8Db)

It

The slow decrease of the successive contributions to the coefficient in equa-
tions (8) suggests that their sum may not converge. This questionable con-
vergence is undoubtedly associated with the behavior of Nigam's solution near
the equator because the local results near the pole converge rapidly as shown
in the section LOCAT, SHEAR AND SEPARATION.

MASS FLUX

In the present solution the question of inflow or outflow from the bound-
ary layer can be settled by the values of f(w) in table I because the total

mass flux in the layer is

/‘°° 2aru Ay ~ () (9)
0

On a spherical surface ¥(w) increases with 6 up to 6 ~ 2ﬁ/3, thereby imply-
ing that an inflow exists everywhere on an actual sphere except at the
equator.

LOCAL SHEAR AND SEPARATTION

On a sphere the shear component S that is developed by the flow toward
the equator (illustrated in fig. 3 along with Nigam's results) is

s = awd/2,y"1/2 [ef'l'(o) - -é- 95( 1(0) - f‘i(o)) .. ] (10)

The convergence of the present solution seems rapid enough to suggest that the
limiting shear curve is between the three- and four-term curves but closer to
the four-term curve, Interestingly, the present results show positive shear
values at locations beyond the equator that could exist on an experimental
sphere if one of the two boundary layers was removed. The Tact that separation

8
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(S = 0) occurs beyond the equator in figure 3 is also suggested by equation (3),
which shows that the curvature of u at the surface declines to zero at the
equator and reverses for 6 > n/2. In view of the agreement between the pre-
sent torque results and experimental results, it appears certain that the local
shear values up to the equator in figure 3 are a good approximation to those
that exist on an experimental sphere outside the collision zone.

Present report Nigam's solution is supposed to
————Nigam, ref. 2 satisfy the same boundary-layer equa-
tions as the present solution.
Neither solution accounts for an
equatorial collision. Thus, Nigam's
solution is directly comparable to the
present solution, but the results in
figure 3 deviate grossly at the
equator because of Nigam's formula-
tion. This formulation can be Jjusti-
fiably termed erroneocus by comparison
with the present solution, which is
experimentally verified. As a conse-

.2 Terms

.24

.16

.08

0 30 60 ) 120

e = x/a, deg from pole quence of the erroneous formulation, a
. . . . X .

Figure 3. - Shear component on sphere developed by flow toward <-11vergence in Nigam's series solution
equator, is to be expected near the equator,

even though the tendency toward such a
divergence is not too striking in Nigam's low-order results in figure 3.

CONCLUSIONS

Nigam's solution to the boundary-layer equations contains an erroneous
downstream condition; namely, that the boundary-layer flow away from the pole
stops at the equator. BSuch an equatorial condition arises in an experiment,
but it can neither be accommodated by the boundary-layer equations nor does it
arise naturally in valid solutions to those equations.

The solution herein yields a torque value for a sphere that agrees with an
experimental value. Nigam's theoretical value is higher, and it has ques-
tionable convergence; in fact, a local divergence near the equator is to be ex-
pected because of the erroneous formulation of Nigam's solution.

In the present solution, which is widely applicable to spinning axisymmet-
ric bodies with conical tips, the surrounding fluid flows into the boundary
layer at all locations on a hemisphere. This result agrees with experimental
smoke studies that show the only outflow to be at the equator where the bound-
ary layers collide,

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, July 20, 1964
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